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MINIMIZATION OF THE AMOUNT OF STRAIGHT REINFORCEMENT IN COMPOSITES

1. INTRODUCTION

When a weak matrix has to be reinforced in order to increase its strength the most efficient
way to do so is to place the reinforcement in such a way that it is directed along the principal
stress-trajectories. Since the directions of these trajectories usually change from point to point
in a structure the result will be a curvilinear arrangement of the reinforcement. Though effi-
cient this may be quite an expensive way of producing a strong composite structure.

More often the reinforcement is placed along fixed directions chosen in advance for some
practical reason. The question of determining the smallest amount of reinforcement sufficient
to carry a given load while placed in fixed directions has been given some attention in connec-
tion with reinforced concrete. A solution for reinforced concrete in plane stress was given by
Nielsen in 1969, (Nielsen [69.01] [84.01]). Since plain concrete is a brittle material in tension
it is assumed that the concrete cracks so that it is in a state of uniaxial compression when ten-
sile reinforcement is required. The determination of the direction of these cracks plays a domi-
nant role in the development of formulae for minimum reinforcement in concrete.

The development here is not based on the assumption that the matrix cracks. It may be used
in connection with any criterion of failure for the matrix.

In section 2 the basic principles are reviewed and some examples with orthogonal reinforce-
ment in two directions are given in section 3. When a composite is reinforced in two ortho-
gonal directions only, the shear stress corresponding to these two directions has to be carried
by the matrix alone. When the shear stress cannot be carried by the matrix alone reinforce-
ment in at least a third direction has to be supplied. An example of this is given in section 4.

The basic principles in section 2 are quite general, while the examples in sections 3 and 4
cover plane stress only.

2. BASIC PRINCIPLES

In a composite material reinforced with fibres, threads or bars in N directions the total stress
0, in the composite is expressed by the stress my, in the matrix, the volume fraction o™ for
the n’th direction and the extra stress tﬂl in the reinforcement in that direction as

N
og =my + ) oNth (1)
n=1
The extra stress t,; in the reinforcement is the difference between the total stress in the rein-
forcement and the matrix stress my. When the reinforcement consists of fibres, threads or
bars it is assumed that the extra stress may be approximated with a uniaxial tension or com-
pression t in the direction a of the reinforcement so that




ty = thagay’ (2)

for the n’th direction.

With the notation (pta, 2;)" = npntnaﬁaln the relation between the stress in composite, matrix
and reinforcement is

N
g = My +Z (otaya)? (3)
n=1
The extra stress in the reinforcement is limited by
<; <
-t, St St ' (4)

where t, and t, are maximum extra stresses in compression and tension respectively. In
order to utilize the reinforcement as effectively as possible the extra stress has to have
one of its maximum values or no reinforcement at all should be provided in the direction
under consideration.

The total amount of reinforcement in a unit volume of composite is

N
o= " (5)
n=1

Since, however, high strength is expensive, it is more appropriate to minimize a measure
¢t defined as

N
ot = D (oty)® (6)
n=1

where ty; equals either t, or t_ as the state of stress dictates.

By using (3) the measure of reinforcement ot is expressed in terms of the composite
stress g and the matrix stress my,. The composite stress q,; is determined from stress
analysis and regarded as constant at each point of the structure while the matrix stress
m,,; has to be determined in such a way that ¢t attains a minimum. The components
of the matrix stress are restricted by the failure criterion

f(my) =0 (7)

for the matrix material and again the composite is utilized most effectively when both
matrix and reinforcement fails. Defining a function

F = pt(myy) - Af(my,) (8)

where A is a Lagrangian multiplier, minimum reinforcement is found by minimizing F.
Since equation (8) consists of no more than 6 (in plane stress 3) scalar equations, only
reinforcement in 6 (3) directions can be minimized. If more directions are used the
amount of reinforcement in some directions have to be determined from other con-
siderations. oo




3. REINFORCEMENT IN TWO DIRECTIONS

In a composite reinforced in two orthogonal directions x and y the stress-components in
plane stress are

UXX =Inxx + thX

= +
gy = Mgy gayty (9)
ny = mxy

Three values of Pty Viz. ¢ by s 0, ety s have to be investigated together with three
values of apyty, viz. prt 0, —¢yt oy * giving a total of nine instances as shown in table 1.

ty
Px by oyty

1 Py bix Yyt
21 b | ~oybey
3 oo by —p_t -
4 ~Pe ‘pytty
5 Pt 0
6 0 "oytty
7 Py tex 0
8 0 - cpytcy
9 0 0

Table 1.

In the following subsections these investigations are performed in connection with differ-
ent matrix failure criteria.




3.1 QUADRATIC FAILURE CRITERION

A matrix failure criterion that is a complete polynomial of the second degree may be given
as

12/CT-11/82 + (C-T)I/CT-1=0 : (10)

where I and II are the two first principal invariants of the stress tensor and C, T and S are
the strengths in uniaxial compression, in uniaxial tension, and in pure shear, respectively.
The criterion can be used for isotropic materials only. As shown in [86.01] the criterion
may be written as

)2

45%-CT (C-T)$? 15, (my-my
aors? M TRy T 200 op) 452

> (C+T)%82-C?12 _

S2  (482-CT)CT

+ (11)

in plane stress. With

SZ
2 - m ((C+ T)2 g2 _CZTZ)

g2

- S5 202 _~2m2
a2 omor (€8P -C"T%) (12)

Q2

g = _(C-T)S?
48% - CT

this expression reduces to
f = Q%(my, + my  +2B)% + A%(m —m )%+ 4A%m] -4A%Q% =0 (13)

which will be used when minimizing F = ¢t —Af.

1) Witho t, =¢ .t and npyty = tpytty both sets of reinforcement are in tension and we have
from (9)

“axttx = Opy — Mgy

Vyley = Oy ~ My (14)




so that
F =gat—kf=¢xttx+gaytw -Af
=0, ~my, t o -my - M@ (m, + m, + 2B)2
+ A% (my, -m )% + 4A% (02 - Q%)) (15)
Minimum reinforcement is found for

3F/omy, = -1-M(2Q? (my, + m_ + 2B) + 2A%(m,, -m ) =0

(16)
= 2 2 -
aF/amw =-1-A(2Q"(my, + My + 2B)-2A (mxx—myy)) =0
Elimination of A gives
m, =m (17)
and from the failure criterion (13) we find
i = = A 1—(0XY/Q)2 -B (18)
so that
Oetie = Oy + B =AV1-(0,,/Q)?
- 2
¢ytty - + B -A 1—(0Xy)Q) (19)
A =1/(4AQV Q% -02)
Since each volume fraction has to be positive, this result is valid when
2
Oy 2 AV1-(0,)Q)*-B
(20)

0y 2 AV1-(0,)Q)%-B

2) With ¢ty = - ¢t and k,Dyty= -prtcy both sets of reinforcement are in compression and
equations (9) give




"Dxtcx Smy, — 0y
Vyley = Myy ~ Oy (21)
Myy = %y

Corresponding to 1), minimum reinforcement is found for

m,, =m = - AV1-(0/Q)% -B (22)

and

Oebex = ~0gx ~B-4 1-(UXY/Q)2
0y ~B—AV1-(0,,/Q) (23)

Yyley = ~ Oy

A= —1/(4AQ\/Q2—0}?Y)

The amount of reinforcement is positive when

o <-B -—A\/l—(axy/Q)z

oy <-B-A 1—(crxy/Q)2

(24)

3) Compression in one set of reinforcement and tension in the other is first treated with
oty =0ty and xpyty =— ¢ytcy. From (9)

Yyley = My ~ %y (25)
My = %y
so that

F =gt -\ =gty + gty —AE=

= Ogy My T My —Uyy—?x(Qz(mxx +m + 2B)2 +
+ A%(m,, -m, )% + 4A% (02 - Q%)) (26)

Minimum reinforcement is found from

3F/om, = - 1-A(2Q%(m,, + m+ 2B) + 2A%(m,, —m_)) =0
(27

3F/amy, = 1-N2Q%(my, + m . + 2B)-2A%(m,, -m ) =0




giving

m, =+QV1-(a,/Q*-B

m, =-Qv/1-(0,/Q)% -B
and

b =0y + B—QW
Oyl == 0y =B —Q\/l_——(W

v
N =-1/(4A%V/Q%-02)
valid for

Oy Z - B +QV1-(0/Q)
-B - QvV1-(0,,/Q)?

4) The results forg t. =-¢.t., and ¢yty = wytty are

A

g
yy

m,, = - Qv1-(0,/Q) -B

me, =+ QW -B

and |
A '—B-Q\/IW
oy = + B -1 (g Q7
= 1/(4A2\/ﬁ2y_)

valid for

O S —B-Qv1-(0,,/Q)?
2 -B+QV1-(0,/Q)?

g,
yy

(28)

(29)

(30)

(31)

(32)

(33)




5) With no reinforcement in one direction and tension in the other, e.g. .t = ¢t and
¢yty = 0, equations (9) give

‘pxttx = Ogx ~ Mgy

Myy = yy (&4)

My = %y
No minimization takes placé the matrix stress m_, is determined from the failure cri-
terion (13) with m . = and My = Op from (34). We find

me, = =B+ gy o7 (A7-Q%) (o, + B) + 24V/(4% + Q) (@~ -Q%(0y + BY)

(35)

¢ b, =0 +B- Q2 ((A%-Q%)(o,, + B) + 2A4/(A%+Q%)(Q? -02)-Q%(a,, +B)? )
valid for

Q% (agy + 0y + 2B) + A%(a 0, )2 + 4A% (¢ -Q%) 2 0 (36)

In the other cases with reinforcement in one direction only, we have

6) ot = 0, gpyty = ‘pytty

my, =B+ ?2%59 ((A2-Q?) (0, + B)+ 28V/(A2+ Q?)(Q%-02,) -Q%(a + B)?) (37)
Yyl = Ogy ™ Ty

) oty =—o by ,gayty =0

%=_B+A2+Q2((A2 -Q%) (0, + B)-2AV(A2+Q%)(Q?-a2) -Q (5, + B)Z)  (38)

¢X (0:4 mXX U

8) ¢t = 0, apyty = —‘pytcy

m = -B+ ;ﬁ ((A2-Q%)(0, + B)-2AV/(A%+ @)(Q? -0 )-Q% (6t B)* ) (30)

YCY InYY




9) When ¢t = prty =0, (9) shows that the matrix stress equals the composite stress and
no reinforcement is required when

Q% (o, + oy 2B)2 + pﬁ(om-ayy)2 + 4A20x2y—4A2Q2 <0 (40)

The results are summarized in figure 1 and table 2. Figure 1 shows a ., O™ plane in a
Oy > Oyy » Tgy— SPACE. The plane is divided into 9 fields, each field corresponds to a particu-
lar set of values of the parameters ¢ t_, wyty , M, and me . Values of these parameters
are given in table 2 while equations for the boundary-lines are given in figure 1. Amounts

of reinforcement are computed using equations (9).

%y
® Qi ®
:H
=2 It
| aa]
1] +
432’ as) v
S_h + DN
i ]
4..1: B © e Oy +B=y
Uyy +B-= Uy
= GXX
i ) ®
o
Il f=0
7 @ ©
S?:
N\ / oyt BTy,
sy +B=-u
S
z d "
> I a
| +
I A 4
o +>¢ B S
9_§>a bN

Gty = = by ‘pxtx =0 Py by = "Dxttx

- N2 2 2 2 2 2 22
f(axx,ayy,axy) = Q% (0, T Iyy + 2B)° + A (oxx—oyy) + 4A oxy~4A Q

U1 (%) = AVI-(0/Q)
ug(o,) = QV1-(0,,/Q) T

Xy

Figure 1.
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Field | %ty oty m,, + B me. + B

1| gty Aty AV1-(0y/Q)° AV1-(05/ Q)2
2 | —aty | gty | -AV1-(0y/Q)7 ~AV1-(0,,/Q)?
5 gt | gty | /1@ Q1 (0, I1Q)?
4| —ete | by -QV/1-(0,,/Q)° QV1(a, /@7

5 O big 0 K, +L; - +B
6 0 «pytty Oy T B K, + L2
7 0 bex 0 K, -L; oy T B
8 0 —¢ytcy o, +B K, -L,
9 0 0 g +B o+ B

XX vy

K, = (A% -Q®) (g5, + B)/(A% + Q%)

Ly = 2AV/(42 + Q%) (Q%-a2) - Q%(oy + B)?/ (A7 +Q7)

K, = (A2 - Q%) (o, + B)/(A% + @)

L, = 2Av(4% + Q%) (@2 - ¢%) -Q% (g, + B)? /(4% +@P)

Table 2.

3.2 PRINCIPAL STRESS FAILURE CRITERION
The principal stress criterion in plane stress consists of two failure furictions
£y = —(my, - T)(mg, -T) + o, =

(41)
£y = =(my, + C) (my, + C) + o, =

Minimum reinforcement is found following the same procedure as in subsection 3.1. The
results are summarized in figure 2 and table 3, to be used together with equations (9).




11

In plane stress and with the tensile matrix-strength T = 0O the principal stress criterion is
identical with Conlomb’s modified criterion used by Nielsen ([69.01], [84.01], and the
amounts of reinforcement found are the same. Nielsen did not use compressive reinforce-
ment and consequently he did not use the fields 2, 3,4, 7, and 8.

vy
|
|
I
|
|
® _[lo|l o
I | =) =
I I i
a.yy=T “
______ ——
v Oy ~ W1
;UXX
@ w0\ 50 (3
a. = .
vy 2 \ gy = Uy
V|
|
O, IO,
=k 21| =
I i I
q sl s
bﬁ ON l bN
|

fl(gxx’ayy’oxy) = =i, —-T)(ayy—T

2
)-1—(1Xy

o (O Oy Oy) = = (0 + C) (0 + C) + 0

- 2
ul(oxy) = T-—\/axy
uz(oxy) =-C+v U,%y

uy(0,) =57 (T-C + V(T +C)2-46Z, )

u,(6,) =5 (T-C—/(T+ )2 4a2 )

Figure 2.
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Field | @ty oy by mg, my.
1 o b ‘pytty T —\/;g T - \/;g
2| —gbe| ety | -CHVE, ~C+voZ,
3 tte | oty | 5 (T-C+/(T+CP-42) = (T-C-V(T+0)*- 462
4| el gty L (T-C-V(T+0P-452) | 5 (T-C+/(T+C)P-4aZ)
5 0 by 0 T+ afy/(ayy -T) U
6 0 ‘pytty Oy T+ ofy/(oxx—T)
7 - b 0 -C+ Ux2y/(0yy + C) -
8 0 _‘pytcy O -C+ szy /(o + C)
9 0 0 oy Oy
Table 3.

4. REINFORCEMENT IN THREE DIRECTIONS

When a matrix is reinforced in two orthogonal directions only, the shear stress has to be
carried by the matrix alone as equation (9 c) reveals. This is possible only when the shear
stress does not exceed the shear capacity of the matrix material. The shear capacity is
generally not equal to the shear strength of the material corresponding to the stress-state
pure shear. In case of a material that fails according to the quadratic criterion, the shear
capacity is Q where Q is given by the expression (12 b), and, in case of a material that
fails according to the principal stress criterion the shear capacity is (T + C)/2.

If the shear stress exceeds the shear capacity at least two possibilities are open. The easy
way is to increase the thickness (and the weight) of the disk thus reducing the stress to a
value below the capacity, and then use the results from section 3. Another possibility is to
provide the matrix with reinforcement in three directions. The three directions may be
chosen arbitrarily, here two orthogonal directions, x and y, and a direction inclined an
angle § = 45° with x and y will be considered. The arrangement is shown in figure 3.
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\\
N
N

N N

N \\\
N\

N \\

/lé

From (3) the relations between composite stress, matrix stress and extra stress in the rein-
forcement are

Figure 3.

_ > 2,y = 1
Ogx = Mgy + “ (ptcos®0), =m,, + ¢, t, + P) Yoty
- . 9 _ 1
Opy = Myo + nZ (ptsin®0) = mg, + ¢yty Ex 5 %t (42)
; _ 1
gy = DMyo + nZ (ptsinf cosf), = m,. + - v t,

where ¢,_, ey and g, are volume fractions and t_, ty and t, are extra stress in the x, y and
6 = 459 directions.

Using the same procedure and the same quadratic matrix failure criterion as described in
subsection 3.1, values of matrix stresses my o, My, and m y are found giving minimum of
pt=g¢ t + goyty + gty The results are summarized in figures 4 - 23 and tables 4 - 5.

Several figures are needed when a material is reinforced in three directions, each figure
corresponding to a domain of values of the shear stress g, . Also two sets of figures have
to be used according as A is less than or greater than 2Q.

One set (figures 4 - 13) has to be used when A < 2Q (= Q/V/2 < 2Q2 /v/ 4Q2 + A?), the
other set (figures 14 - 23) has to be used when 2Q < A (= 2Q2/V/4QZ + AZ < Q/V/2).

In both cases the boundaries between the fields in the figures are determined by the func-
tions given in table. 4, and V:alues. of gt , o b, ‘/’yty’ m., My, + B and m. + B corre-
sponding to each field are given in table 5.

Amounts of reinforcement are computed from eqgs. (42) using table 5, first g, from

1
Oy = My + 5 9yt (43)

then ¢, and ¢y from

_ 1
Oy = Myy T 0ty T 501
(44)

- 1
Opy = Myy T At + 5 0t




yy

+ B

14

14 16 11
15
19
17
Gxx: B
12 18 13

A<2Q

Q< Oy

Figure 4.




15

XX

ny + B

]
14 16 11

(

15
17
9 o

12 18 13

A<2Q

QV4Q2 + AZ | /2(2Q2 + A2 < 6y < Q

Figure 5.

+ B




14

o. +B

yy

16

16

11

XX

19
15
17 —;\\
]
N 19
12 18 — 18 13

A<2Q

2Q2%/v/4Q% + A% < Oy < QV4Q2 + A2 //2(2Q2 + A2)

Figure 6.




17

ny + B
14 16 11
K
15
17 9
- + B
7
L~
2 18 13
A<K2Q
Q/V2< 0, <2Q%/V4Q% + A

Figure 7.




vy

+ B

16

18

11

19

15

A<2Q

0 <o < Q/V2

Figure 8.




+B

19

4 6
9
7
Gy + B
27
29
22 28

A< 2Q
-Q /V2<0g, <0

Figure 9.




24

26

+ B

20

21

22

A<2Q

29

28

25

-2Q2//4Q2 + A2 <o, <-Q /VZ

Figure 10.

23

+ B




24

26

o.+B

s

21

25—\

21

Nel
e

+B

27

22

A< 2Q

29

™

28

25

23

~QV/4Q% + A2 /1/2(2Q? + A?) < g, <-2Q7/V4Q% + A

Figure 11.




yy

22

- 26 21
Q/ 25 gy T B
27 '
29
/ )
29 28

A< 2Q

-Q< gy < —Q/4Q2? + A2 | /2(2Q2 + A2)

Figure 12.
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26

23

+ B

21

27

22 -

29

28

25

23

+ B




Fields Boundary

1-5 o, +B=
YY } AV1 -(o/Q)*
1-6 0, +B= ¥
1-11 oy =0
1-21 oy = -2Q°N/4Q% + A
B - : o, +B=
¥y - AV1-(04,/Q)?
2-8 g, +B= v
2-12 oy = 2Q%/4Q% + A2
2 - 22 opy =0
3-5 oy +B=-vVQ2 -2
3-8 o T B=VQ% -0
3-13 Opy = QN2
3-23 Oy == QN2
4-6 o tB=-VQ% -2,
4-1 0y +B=vQ%- 0%
4-14 oxy=Q/\/2—
4-24 Oy == QN2
5-15 h, =0
5-25 hy =0
6-16 h, =0
6-26 h, =0
7-17 hy =0
7-27 h; =0
8-18 h, =0
8 -28 h, =0
9-5
9-6
o7 £=0
9-8
9-19
9-29 |

Table 4 (continued)




Fields Boundary
11-15 o +B= o
11-16 o +B= Xy
XX
12 - 17 o +B=
vy }0 -(2Q2 + A%)//4Q2 + A2
12 -18 o, tB= ) ¥
13 -15 oy *B =0, -v/2Q
13-18 O T B =0y
14 -16 Oy tB=0,, —V/2Q
14-18 o, +B=0
19-15 g =
19-16 gy =
19 -18 g, =
21 -25 o.+B=
vy o, +(2Q% +A%) /\/4Q? + A2
21-26 o,+B=] %
22 - 27 o.+B=
yy }oxy—A
22 - 28 o +B=
23-25 Gy B=g ~
23-28 Oe T B=0,,+V2Q
24 -26 O T B=0y
24 - 27 ayy+B=axy+ﬁQ
29 - 25 g3 =0
29 -26 g, =0
29 - 27 g, =0
29 -28 g, =0

Table 4 (continued)

25




26

£(0 y 0 ) Q% (agy + 0y + 2B)% + A%(0, -0, )7 + 4A% 2 -4A%Q7

vy “xy
81 (0y> s Oy) = A%(0—0,,)% +2Q% (0, + B-0,)?-2A7Q7

= A2(0 _o )2 2 L \2_9aZn2
89( 0y > oyy,oxy) A% (0 4 oyy) +2Q (oyy-i-B oxy) 2A°Q

83 (0gx> gy Tgy) (Az(oyy +B-gq,,) -(2Q2 + A%) (0, +B —ny))z

—2Q%(2Q? + A%)(2Q% + A% —(a,, + B-0q,)?)

84(0gs Oy Oyy) = (A2(agy + B0, ) -(2Q% + A%) (0, + B-0,))?

- 2Q%(2Q2% + A2)(2Q% + A% - (0 + B—ny)z)

- 02 2 _A2/02_ 9.2
hl(ayy, oxy) Q (oyy +B+ ny) A% (Q 20xy)
By (0yy» Opy) = Q%(agy + B+a, )2 - A%(Q® -2a2)

= 02 2 2 2 2
h3(0yy,axy) Q°((4Q“ + A )(UYY+B)+A ny)

-(2Q% + A%)(Q%(4Q% + A%) -2(2Q° + A%) a2
By (0 s Oyy) = Q2((4Q? + A?) (0, + B) + A%q, )2

— (2Q% + A%)(Q%(4Q2 + A%) -2(2Q7 + A%)}))

Table 4.




21

Field ¢,t, Oty by m, m.,+ B m+ B
1 0 ot 2ty Oy +AV1-(0,, IQ)Z | +Av1-(0,,/Q)2
2 0 ctter | By Oy ~AV1(0JQ)? | -AVI-(JQ?
3 0 b | ~Gytey Oy + QY10 /7 | -QV/1-(0,/Q)*
4 0 ot | Gty Oy ~QV/1-(0, IQ? | +QV1-(0/ Q)7
5 0 O bix 0 Oyy K, +1L; G + B
6 0 0 2 by Oy o, +B K, + L,
7 0 A 0 Oy K, -L; Oy + B
8 0 0 -9 tcy Tyy 0 T B K, - L,
9 0 0 0 Gy o, +B Uy +B
11 | ¢t P by (pytty 0 A A
12 | gt oty | Rty | 2Q2/V4QZ+AZ - A?mj2Q7 | - AZm /2Q?
13 | gty Oty O bey QN2 +mo -m,
14 | gt b | Yytey Q/V2 -m, +myy
15 | gty O by 0 M; + Ny 3mxy—oxy+oyy+B my, oxy+oyy+B
16 | gty 0 ‘pytty M, + N, m, —oxy+ 0., TB 3m, -oxy+ e 5.8
17 @, byp P box 0 M; + Ng —me—P1 my —0yy + oyy+B
18 @, b 0 - tcy M, + N, m, —axy+oxx+B —mxy—l:'2
19 @ by 0 0 R; + Ry n&y'oxy-*_ax_x'*-B m, —oxy+oyy+B
21 | ~gty, | @by | gty -2Q?/v/4Q%+ A2 | -A’m_/2Q? -Rm,/2Q?
22 | —g,t,, -0 by —¢ytcy 0 -A -A
23 | —gt, Yty ~0 by -Q/IVZ +my, - My
24 | —gty —Pxtex Gy by -QIVZ — Mgy T my
25 ~@te, O by 0 M; -Ng -0 P my. ny-l-ayy-I—B
26 | —gt,, 0 2ty M, -N, My ~0,+ 0 +B -m, P,
27 -yt Pebox 0 M; -N; 3m, -oxy+oyy+B mxy—oxy+oyy+B
28 -yt 0 —goytcy M, - N, m,.. —o y-l— O T B 3mxy—oxy+axx+B
29 =@t 0 0 R, -Ry m, —oxy+oxx+B m, —oy+oyy+B

Table 5.




Ky = (4%-Q%) (0, + B) / (A + Q%)

K, = (A2-Q?) (0, + B) / (A% + Q%)

L, =2AV/(A%+ Qz)(Qz-ofy ) -Q(0,, +B)? / (A%+Q%)

L, =2AV(A%+Q?)(Q%-02) -Q%(q, +B)?/ (A%+Q?%)
M, =-Q%(q,, +B-0) / (2Q% +A%)

M, = - Q%(0, +B-0,,) / (2Q%+A?)

N; = AQV2(2Q%+ A% — (g, +B-0,)%) / 2(2Q% + A?)

Ny = AQV/2(2Q2 + A% - (o, +B-0,,)%)/ 2(2Q7 + A?)

N, = Qv/2(2Q%+ A?)(2Q% + A2~ (o, + B-q,)?) / 2(2Q7 + A?)

N, = QV2(2Q%+ A2)(2Q%+ A%~ (g, + B -0, )?) / 2(2Q + A%)
P, =(2Q%-A%)(g,, +B-0, )/ (2Q7+A?)
P, =(2Q2 -AZ)(UXX-{-B—ny) / (2Q2 + A2)

Ry = -Q%(ge, + 0y, +2B-20, ) / 2(Q%+A?)

R, = AV4Q2(Q%+A2)-Q% (0, + Oy + 2B—20xy)2—(Q2+A2)(oxx—oyy)2 / 2(Q2 + A?)

Table 5.
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5. CONCLUDING REMARKS

Minimum reinforcement is determined for composites loaded in plane stress with known
stresses. The composites are isotropic matrices reinforced in either two orthogonal direc-
tions chosen in advance or in three directions, two orthogonal and a third inclined at 45°
to the two others.

It is assumed that both matrix and reinforcement can carry failure stress at the same time.
If the ultimate strain of the matrix is greater than the ultimate strain of the reinforcement
this should cause no problem. If the ultimate strain of the matrix, however, is less than the
ultimate strain of the reinforcement, failure stress cannot occur in both materials at the
same time. This problem often arises in connection with tensile stress and a simple and
effective way to overcome the description of this phenomenon, is to supplement the ma-
trix failure criterion with the principal stress criterion with no tensile strength i.e.

=l =i . o+ szy = 0. The result is that all tensile stresses are carried by the
reinforcement alone while shear and compressive stresses are carried by both reinforce-
ment and matrix.
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